

Illinois Nutrient Loss Reduction Strategy: What is it? How does it impact me?

Lauren Lurkins Director of Natural and Environmental Resources Illinois Farm Bureau

WHY IS THE STRATEGY NEEDED?

- Gulf Hypoxia Task Force
- USEPA Guidance Memo in March 2011
 - <u>Purpose</u>: Encourage states to develop nutrient reduction strategies while continuing to develop numeric nutrient standards.
 - Lays out 8 elements of a framework
- Federal litigation in Louisiana

IOWA NUTRIENT REDUCTION STRATEGY

- Iowa's NRS has been in place for almost 2 years
- Des Moines Water Works filed lawsuit March 16, 2015 in federal court to declare drainage districts as point sources under the Clean Water Act
- Opponents claim voluntary action is not enough, and no benchmarks
- Damages: Claiming operation of nitrate removal technology (2013 alone costs of \$900,000)
- Iowa agriculture groups continue to emphasize collaborative efforts to improve water quality, rather than litigation

. Family. Food."

STAKEHOLDER INVOLVEMENT

Stakeholders met August 2013 - May 2014:

- Illinois Department of Agriculture, Illinois EPA
- University of Illinois Science Team
- Illinois Farm Bureau, Illinois Pork Producers Association, Illinois Fertilizer and Chemical Association, Illinois Corn Growers Association
- Association of Illinois Soil and Water Conservation Districts
- University of Illinois Extension
- NRCS
- Sanitary Districts/Wastewater Treatment Plants
- Prairie Rivers Network, Environmental Law and Policy Center, Sierra Club
- Illinois Environmental Regulatory Group

STATUS OF THE STRATEGY

- Public comment closed January 24, 2015
 - Nearly 1,000 comments filed
 - 80 from farmers, 100s from Sierra Club members
- Expected final strategy in July/August will go to USEPA, and implementation will begin

SCIENCE ASSESSMENT

- February 2013 Illinois EPA partnered with University of Illinois to develop the Science Assessment:
 - Current conditions in Illinois of nutrient sources and export by rivers in the state from point and non-point sources
 - Methods that could be used to reduce these losses and estimates of their effectiveness throughout Illinois
 - Estimates of the costs of statewide and watershed level application of these methods to reduce nutrient losses to meet TMDL and Gulf of Mexico goals

- 8 major river systems used in estimating nutrient loads
- Gaging stations are upriver from the state boundary, so the estimated area is smaller
 - Rock River Joslin
 - Green River Geneseo
 - Illinois River Valley City
 - Kaskaskia River Venedy Stn.
 - Big Muddy River Murphysboro
 - Little Wabash River Carmi
 - Embarras River Ste. Marie
 - Vermilion River Danville

RIVERINE LOADS OF NITRATE-N AND TOTAL P

HUC8 Non-Point Source nitrate-N Yields

SCIENCE ASSESSMENT

Illinois contributes 20% of nitrate (410 M lbs) and 11% of phosphorus (37.5 M lbs) that makes it to the Gulf

STRATEGY TARGETS AND COSTS

- <u>Baseline</u> Average annual loading of nitrate-N and P from the 1980-1996 levels
- <u>Targets</u> (5 year running average)
 - N: 15% by 2025, 45% ultimate
 - P: 25% by 2025, 45% ultimate
- <u>Estimated costs</u> \$800 million annually from point source and nonpoint source, with no new funding sources

AGRICULTURAL NONPOINT SOURCES

- Includes recommended BMPs shown through peer reviewed research to reduce nutrient losses
 - In-field
 - Edge of field
 - Land use changes (perennial crops)
- Information on costs and estimated reductions/acre for N and P
- Combination scenarios of BMPs to see large scale reductions

Table 3.11. Example statewide results for nitrate-nitrogen reductions with shading to represent in-field, edge-of-field, land use, and point source practices or scenarios.

Practice/scenario	Nitrate-N reduction per acre (percent)	Nitrate-N reduced (million lb)	Nitrate-N reduction from baseline (percent)	Cost (\$/lb removed)
Reducing N rate from background to MRTN on 10 percent of acres	10	2.3	0.6	-4.25
Nitrification inhibitor with all fall- applied fertilizer on tile-drained corn acres	10	4.3	1	2.33
Split application of 50 percent fall and 50 percent spring on tile- drained corn acres	7.5-10	13	3.1	6.22
Spring-only application on tile- drained corn acres	15-20	26	6.4	3.17
Split application of 40 percent fall, 10 percent pre-plant, and 50 percent side dress	15-20	26	6.4	
Cover crops on all corn/soybean tile-drained acres	30	84	20.5	3.21
Cover crops on all corn/soybean non-tiled acres	30	33	7.9	11.02
Bioreactors on 50 percent of tile- drained land	40	56	13.6	1.38
Wetlands on 25 percent of tile- drained land	40	28	6.8	5.06
Buffers on all applicable crop land (reduction only for water that interacts with active area)	90	36	8.7	1.63
Perennial/energy crops equal to pasture/hay acreage from 1987	90	10	2.6	9.34
Perennial/energy crops on 10 percent of tile-drained land	90	25	6.1	3.18
Point source reduction to 10 mg/L		14	3.4	3.3

Table 3.14. Example statewide results for total phosphorus reductions by practice/scenario with shading to represent in-field, edge-of-field, land use changes, and point source practices or scenarios.

Practice/scenario	Total P reduction per acre (percent)	Total P reduced (million lb)	Total P reduction from baseline (percent)	Cost (\$/lb removed)
1.8 million acres of conventional till eroding >T converted to reduced, mulch, or no-till	50	1.8	5	-16.6
P rate reduction on fields with soil test P above the recommended maintenance level	7	1.9	5	-48.75
Cover crops on all corn/soybean tile- drained acres	30	4.8	12.8	130.4
Cover crops on 1.6 million acres eroding >T currently in reduced, mulch, or no-till	50	1.9	5	24.5
Wetlands on 25 percent of tile- drained land	0	0	0	
Buffers on all applicable crop land	25-50	4.8	12.9	11.97
Perennial/energy crops equal to pasture/hay acreage in 1987	90	0.9	2.5	102.3
Perennial/energy crops on 1.6 million acres >T currently in reduced, mulch, or no-till	90	3.5	9	40.4
Perennial/energy crops on 10 percent of tile-drained land	50	0.3	0.8	250.07
Point source reduction to 1 mg/L (majors only)		8.3	22.1	13.71

Table 3.15. Example statewide nitrate-nitrogen scenarios.

Name	Combined practices and scenarios	Nitrate-N (percent reduction)	Total P (percent reduction)	Cost of reduction (\$/lb)	Annualized costs (million \$/yr)
N1	MRTN rate, spring-only N application, cover crops on 70 percent of tile- drained and 45 percent non-tiled acres, bioreactors on 50 percent of acres, wetlands on 25 percent of acres, all ag streams have buffers	45	20	3.67	678
N2	MRTN rate, spring-only N application, cover crops on 100 percent of tile- drained and 70 percent of non-tiled acres, bioreactors on 50 percent of acres, perennial crops on non-tiled acres, point source to 10 mg/L	45	33	4.34	811
N3	MRTN rate, cover crops on 100 percent of tile-drained and 70 percent of non-tiled acres, wetlands on 25 percent of acres, perennial crops on non-tiled acres, all ag streams have buffers, point source to 10 mg/L	45	24	4.51	833
N4	MRTN rate, spring-only N application, cover crops on 5 percent of tile- drained acres, bioreactors on 50 percent of acres	20	0.3	1.99	162
N5	MRTN rate, cover crops on 35 percent of tile-drained acres, bioreactors on 50 percent of acres	20	2	2	161
N6	MRTN rate, cover crops on 75 percent of tile-drained and 55 percent of non-tiled acres	20	8	4.55	370

ILLINOIS FARM BUREAU。

Farm. Family. Food.™

Table 3.16. Example statewide total phosphorus scenarios.

Name	Combined practices or scenarios	Nitrate-N (percent reduction)	Total P (percent reduction)	Cost of reduction (\$/lb)	Annualized costs (million \$/yr)
P1	No P fertilizer on 12.5 million acres above STP maintenance, reduced till on 1.8 million conventionally tilled acres eroding >T, buffers on all applicable lands, point source to 1 mg/L	7	45	2.84	48
Ρ2	No P fertilizer on 12.5 million acres above STP maintenance, reduced till on 1.8 million conventionally tilled acres eroding >T, cover crops on all corn/soybean acres, point source to 1 mg/L	29	45	36.44	615
P3	No P fertilizer on 12.5 million acres above STP maintenance, reduced till on 1.8 million conventionally tilled acres eroding >T, cover crops on 87.5 percent of corn/soybean acres, buffers on all applicable lands, perennial crops on 1.6 million acres >T and 0.9 million additional acres	38	45	41.24	696
Р4	No P fertilizer on 12.5 million acres above STP maintenance, reduced till on 1.8 million conventionally tilled acres eroding >T, buffers on 80 percent of all applicable land	6	20	-10.40	-78
Ρ5	No P fertilizer on 12.5 million acres above STP maintenance, reduced till on 1.8 million conventionally tilled acres eroding >T, point source to 1 mg/L on 45 percent of discharge	0	20	-9.73	-73
P6	No P fertilizer on 12.5 million acres above STP maintenance, reduced till on 1.8 million conventionally tilled acres eroding >T, cover crops on 1.6 million acres eroding >T and 40 percent of all other corn/soybean acres	11	20	22.93	172

AGRICULTURAL NONPOINT SOURCES

Livestock operations - BMPs included for:

- Land application of manure
- Runoff management from production areas
- Separate from the NLRS, we have new environmental rules for AFOs and CAFOs in Illinois.

KEY NUTRIENT REDUCTION PROGRAMS FOR NONPOINT SOURCES

- Focus on building upon existing programs and resources
- Reinvigoration of voluntary conservation adoption and nutrient management
- No new legislation or regulation for agriculture

KEY NUTRIENT REDUCTION PROGRAMS FOR NONPOINT SOURCES

State Programs:

IEPA Section 319 grant program, IDNR CREP, IDOA Partners for Conservation Cost-Share

Federal Programs:

EQIP, CSP, Easement Programs, RCPP (\$2.7 to IL in 2015)

Illinois Agricultural Initiatives:

CBMP NREC

ONGOING NLRS WORK

- The work will continue even after the Strategy is finalized (many of these have just started):
 - Agriculture Water Quality Partnership Forum
 - Nutrient Science Advisory Committee (NNCs)
 - Water Quality Monitoring Council
 - Urban stormwater group
- Progress will be reviewed and reported to the public every 2 years
- Strategy is a living document, will be reviewed every 5 years by the stakeholder group to evaluate necessary revisions
- The big effort now is on IMPLEMENTATION of the NLRS!

FARM BUREAU. Farm. Family. Food.

CONCLUSION

- Everyone (urban, suburban, point source, nonpoint source) has contributed to the problem, and now everyone has an opportunity to be part of the solution
- Reinvigoration of voluntary conservation adoption and nutrient management on the farm
- New focus on tracking implementation of BMPs and resulting water quality impacts
- No "one size fits all" approach for all of Illinois agriculture
- Our opportunity to demonstrate that voluntary conservation does work
- Will take something done on every acre!

WANT TO GET INVOLVED WITH IFB ON THIS ISSUE?

- "Nutrients Matter" profiles of Nutrient Spokesmen
 - Weekly series, articles in FarmWeek, videos and photos shared through other IFB media outlets
 - Highlighting current practices across the state, diverse farmers and operations
 - Repurpose to share stories with stakeholders, regulators, legislators, teachers (AITC), general public
- Strength With Advisory Teams (SWAT)
- Local county and watershed engagement/development
- More meeting requests fall/winter

QUESTIONS?

Lauren Lurkins Ilurkins@ilfb.org (309) 557-3153

CBMP - www.illinoiscbmp.org

NREC - www.illinoisnrec.org

IFB page on Illinois NLRS - <u>www.ilfb.org/NLRS</u>

